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In the proposed NASA/ESA telemetry/coding standard, a (255, 223) Reed-Solomon
code is concatenated with an inner (7, 1/2) convolutional code. Under some circum-
stances, it would be desirable to use a shorter outer code word length. For example, the
format of the duta coming from science instruments on board a spacecraft may lend itself
naturally to a word length of 200 symbols rather than 223. To accommodate such code
word lengths, the Reed-Solomon code can be shortened to an (N, N-32) code where N
can be any integer between 33 and 255. Shortening the code, however, changes its
performance. On one hand, the amount of redundancy per information symbol increases.
This would, by itself, imply that performance would improve, However, because of this
increased redundancy, the amount of energy per information symbol is decreased by code
shortening. The overall effect is to degrade the performance of the code. This report
develops the theory of Reed-Solomon code shortening in general and quantifies the
degradation due to shortening in the context of concatenated coding. It is shown that in
the NASA/ESA concatenated system, significant degradations (greater than 0.1 dB at a
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bit error rate of 1078 ) occur only when N < 180.

l. Introduction

All planned NASA and European Space Agency (ESA) deep
space missions are expected to have the capability of using a
concatenated Reed-Solomon/convolutional coding scheme for
downlink telemetry. In fact, this coding system is a proposed
NASA/ESA standard (Ref. 1). The inner code is a (7, 1/2)
convolutional code. This is the same code that is currently
used by the Voyager spacecraft, The outer code is a (255, 223)
Reed-Solomon code. The proposed standard code is slightly
different than that used by Voyager in that a different repre-
sentation is used to represent the eight-bit Reed-Solomon
symbols, The two Reed-Solomon codes, however, share the
same code length parameters and hence have identical perfor-
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mances. Many studies have been performed to determine the
performance of this concatenated coding system under various
conditions (Refs. 1,2,3, and 4).

Since the Reed-Solomon code-words consist of 223 eight
bit information symbols, 1,784 bits are required from the space-
craft’s data system to eficode each code word. Some of these
bits will typically be frame headers that contain identification,
timing, and synchronization information. The remainder of
the bits are data from various scientific instruments, There
could conceivably be cases in which the spacecraft instruments
produce data in a form that is more amenable to being packed
into a smaller number of bits. In fact, it is even possible to
imagine scenarios for which the number of bits that form such




an information packet might vary with time. Under such con-
ditions, it is desirable for the Reed-Solomon encoder to be
able to process fewer than 1,784 bits at a time.

Fortunately, this is possible by adapting the (255, 223)
code for use as a (N, N-32) code for N < 255. One way of
accomplishing this is illustrated in Fig. 1. Suppose that M=/N-32
information symbols are generated by the spacecraft data sys-
tem and that M < 223. To these symbols, the Reed-Solomon
processor appends 223 - M additional symbols, all of which
happen to be zeroes, Since there are now 223 symbols, encod-
ing can take place. A code word consisting of 255 symbols is
generated. Since all Reed-Solomon codes that are planned for
use in space missions are systematic, the information symbols
are themselves a portion of the code word — in this case they
are the first 223 symbols. The zeroes that were added for the
purposes of encoding are now stripped away and the rest of
the code word is sent to the convolutional encoder. After
Viterbi decoding on the ground, the zeroes are once again
added to the code word. This allows it to be decoded. Follow-
ing Reed-Solomon decoding, the zeroes are finally stripped
away to reveal the “original” information sequence.

The above process is an example of Reed-Solomon code
shortening. The effect is to use a (255, 223) encoder and
decoder, to implement an (N, N-32) code. In general, the fixed
sequence that is added to the input information sequence can
be of any form. It is called the “fill sequence.” If, as In the
above example, it is the all zero sequence, then the process is
sometimes referred to as “virtual zero fill.” The fill sequence
can be merged with the information sequence in any way —
not just at the end as in the example. It is crucial, however,
that the fill sequence be added in the same way at the decod-
ing end of the system.

There are two phenomena that occur in Reed-Solomon
code shortening that affect the overall performance of the sys-
tem. The first is that the code rate is changed with shortening,
The code rate of the original Reed~Solomon code is 223/255.
The code rate of a length N shortened RS code is (V ~ 32)/V.
Since

(N - 32)/N < 223/255

for all N < 255, shortening reduces the code rate. If all other
aspects could be held constant, this might imply improved
performance. However, a second effect of code shortening is
to reduce the energy that is expended for each Reed-Solomon
code word in the transmitter. This tends to degrade the overall
performance. In fact, the second effect is greater than the first,
Reed-Solomon code shortening does degrade the performance
of the concatenated coding system.

In the following sections of this report, a theory of Reed-
Solomon code shortening’is developed. The performance of a

_concatenated (7, 1/2) convolutional/(V- 32,N) Reed-Solomon

system is also calculated. It is shown that the degradation is
actually quite small. Only if the Reed-Solomon code word
length is shortened to N = 180 symbols or less will there be a
0.1 dB loss at a concatenated decoded bit error rate of 10~6,

ll. The Theory of Reed-Solomon
Code Shortening

Throughout the remainder of this report, it is assumed that -
the coding system is the proposed standard concatenated sys-
tem shown in Fig. 2.

Suppose that the energy in each channel symbol (the digital
entities that are output from the convolutional decoder) is E..
Then the symbol energy to noise spectral density ratio is Eg/N,.
Since the rate of the convolutional inner code is 1/2, the signal
to noise ratio for the bits that are input to the convolutional
encoder is given by
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Now suppose that the (255, 223) Reed-Solomon code is
shortened to length N (32 < N < 255), This means that the
Reed-Solomon encoder assumes that the N - 32 input informa-
tion Reed-Solomon (RS) symbols are merged with a fill
sequence of length 255 - N RS symbols to form an input
sequence of length 223 RS symbols. The encoder can then
generate the 32 parity check symbols that are appended to the
input sequence to form a length N code word, The rate of the
shortened code is

This implies that the information bit (bits input to RS
encoder) signal to noise ratio is

I ot e 5 ammemmvetios e (I)
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The performance of the Viterbi decoded inner code can be
expressed in terms of E-/V,. Let

E
p= f(yv—V—) ©)
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and

E
= g(_ﬁ‘i> (3)

represent the Viterbi-decoded bit error rate and the error rate
for sets of eight consecutive bits respectively. The quantity =
is also the input RS symbol error rate for the Reed-Solomon
decoder. If the Reed-Solomon code is infinitely interleaved,
then the overall bit error rate of the concatenated code is

N . . ,
P =2 2 (RO a-0™

This theory can be applied to any concatenated coding
system where the outer code is a shortened (255, 223) Reed-
Solotmon code. This is done by appropriately defining p and 7
to be the bit error rate and the error rate for sets of eight bits
respectively for the inner code. One special case is when the
inner code is non-existent. In this case, the coding system
consists only of the Reed-Solomon code. The bit error rate, p,
of the ‘““inner code” is just the bit error rate of uncoded
transmission.

If the channel is memoryless, then

7=1- (1-p)

Ill. Numerical Results

The theory developed in Section II was used to evaluate the
performance of concatenated coding with Reed-Solomon code
shortening. The values of p and 7 that define the performance
of the (7, 1/2) Viterbi-decoded convolutional code came from
software simulations that were reported in Ref. 3. These func-
tions are shown graphically in Fig, 3,

The Reed-Solomon decoded bit error probability was then
computed as a function of E,/N, [Egs. (1) - (4)]. Fig. 4
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shows the results of these calculations for several values of the
shortened code length N. The full code case (V = 255) is
included for comparison. It should be noted that these results
assume that there are no degradations from the analogue parts
of the telemetry receiving system and that both convolutional
and Reed-Solomon code synchronization are maintained per-
fectly. Also, infinite interleaving of Reed-Solomon symbols
is assumed. It is true, however, in the full code length case,
that the difference in performance between an interleaving
depth of five and one of infinity is negligible, '

The loss due to the code shortening is the additional
E, /N, that must be added to the signal to make the shortened
code’s performance equal to that of the full length code. For
a fixed overall bit error rate, this degradation is just the hori-
zontal distance between the corresponding curves on the graph
measured at that error rate. Graphs of this loss for overall bit
error rates of 104, 10~5, and 10~6 are shown in Fig. 5.

IV. Conclusions

The results of the computations performed in Section III
show that the degradation due to Reed-Solomon code shorten-
ing in the concatenated coding system is small for moderate
amounts of shortening. Even at a bit error rate of 1076, a
code word length of less than 180 must be used before a loss
of 0.1 dB exists. In fact, the loss due to shortening does not
vary much with the bit error rate (at least for probabilities less
than 10~%). This is because the Reed-Solomon performance
curve is almost a perfect exponential function in this region.

It is not known at this time how degradationsin the receiver,
subcarrier tracking loop, and symbol synchronizer may effect
these results, It is also not known how node synchronization
losses in Viterbi decoder (Ref. 5) or frame synchronization
losses in the Reed-Solomon decoder (Ref. 6) will affect the
performance of shortened codes. However, it seems that a
small amount of shortening can be accommodated with only a
negligible loss in overall system performance.
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Fig. 1. An example of concatenated coding with Reed-Solomon code shortening
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Fig. 3. Bit (p) and symbol (i) error rate performance of (7, 1/2)
Viterbl decoder
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Flg. 4. Reed-Solomon bit error rate performance as a function of
shortened code word length N
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Fig. 5. Loss due to Reed-Solomon code word shortening




